

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 Mathematics for Computer Science

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted.

1

3. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Obtain the mean and variance of Poisson distribution.	06	L2	CO2
	b.	Out of 800 families with 4 children each, how many families would be	07	L3	CO2
		expected to have (i) 2 boys and 2 girls (ii) at least one boy (iii) at most 2			~
		girls. Assume equal probabilities for boys and girls.			
	c.	The length of telephone conversation in a booth has been an exponential	07	L2	CO2
		distribution and found on an average to be 5 minutes. Find the probability			
		that a random call made from this booth (i) ends less than 5 minutes			
		(ii) between 5 and 10 minutes.			
		OR			
Q.2	a.	The probability distribution of a finite random variable X is given by	06	L2	COI
		X -2 -1 0 1 2 3			
		P(X) 0.1 k 0.2 2k 0.3 k		1	
		(i) Find the value of k (ii) Variance (iii) $P(x \le 2)$			
	b.	The number of accidents in a year to taxi drivers in a city follows a Poisson	07	L3	CO2
		distribution with mean 3. Out of 1000 taxi drivers find approximately			
		number of drivers with (i) more than 3 accidents in a year (ii) at most 2			
		accidents in a year.			~~*
	c.	The marks of 1000 students in an exam follows normal distribution with	07	L3	CO2
		mean 70 and standard deviation 5. Find the students whose marks will be			
960		(i) less than 65 (ii) between 65 and 75. $A(1) = 0.3413$.			
		Module – 2	0.0	1.0	603
Q.3	a.	Given the following joint distribution of the random variables X and Y.	06	L3	02
		Find the corresponding marginal distribution. Also compute the covariance.			
		X Y I 3 9			
	(
			07	1.2	CON
	b.	A salesmen's territory consists of 3 cities A, B and C. He never sells in the	0/	LS	COS
		same city for 2 consecutive days. If he sells in city A, then the next day he			
		sells in city B. However if he sells in either B or C then the hext day he is			
		twice as likely to sell in city A as in the other city. In the long run now			
		often does ne sell in each of the cities.	07	12	cor
		0 1 0	0/	1.1.4	02
	c.	Show that $P = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ is a regular stochastic matrix. Also find the			
		1/2 1/2 0			
		associated unique fixed probability vector			
	-	associated unique fixed probability rector.			

BCS301

CO3 CO2
CO2
CO2
CO4
100
CO4
CO4
CO4
CO4
CO
CO
0-
CO
CO
1
10 1

BCS301

		OR			
Q.8	a.	Two random samples gave the following data:	06	L2	CO4
-		Size Mean Variance			
		Sample 1 8 9.6 1.2			
		Sample 2 11 16.5 2.5			
		Can we conclude that the two samples have been drawn from the same			
		normal population? $F_{5\%}(10, 7) = 3.64$.			
			1411-4		
_	b.	The following data relate to the marks obtained by 11 students in two tests.	07	L3	CO4
		Second test is after intense coaching. Do the data indicate that the students			
		have benefited by coaching?			
		Test 1 19 23 16 24 17 18 20 18 21 19 20			
	1	Test 2 17 24 20 24 20 22 20 20 18 22 19			
		$(t_{5\%} (\gamma = 10) \text{ is } 1.81)$			~~-
	c.	The mean value of a random sample of 60 items was found to be 145 and	07	L2	CO5
		standard deviation is 40. Find the 95% confidence limits for the population			
		mean.			
		Module – 5	10	12	CO(
Q.9	a.	The following figures relate to production in kgs of three variables A, B, C	10	LS	000
		of wheat sown on 12 plots.			
a a .		A 14 16 18			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		Apply one way Approve using a 0.05 significance level in the production of			
		the varieties E at 5% (2.9) d f is 4.26			
	h	Analyze and interpret the following statistics concerning output of wheat	10	1.3	CO6
	υ.	her field obtained as a result of experiment conducted to test four varieties	10	10	000
s		of wheat viz A B C and D under a Latin - Square design.			
		C = B = A = D			
		25 23 20 20			
		A D C B			
		19 19 21 18			
		B A D C			
		19 14 17 20			
9		\rightarrow D C B A			
		1/ 20 21 15			
		OP			
0.10	1	UR	10	13	C06
Q.10	a.	rour doctors each rest rour treatments for a certain disease and observe the	10		
		Doctor/Treatment T_1 T_2 T_3 T_4			
		D_1 10 14 19 20			
		D_1 11 15 17 21			
		D_3 9 12 16 19			
		$D_4 \longrightarrow 8 13 17 20$			
		Discuss the difference between doctors and treatments Fat 5% level (3, 9) is			
		3.86.			
	1	A COMPANY			
		3 of 4			
		(Terrer)			
	, ni	Carrow Carrow			

BCS301

Re

	b.	A study of the effect of different types of anesthesia on the length of post- operative hospital stay yielded for the following for cesarean patients. Group 'A' was given an epidural MS providing additional safety. Group 'B' was given an epidural and Group 'C' was given a spinal is considered to be less dangerous and Group 'D' was given general anesthesia is considered to be the most dangerous. Note that the data are in the form of distribution for each group. Length of Stay Number of patients Group A 3 6 4 14 Group B 4 18 5 2 Group C 4 10 5 9 6 1 Group D 4 8 5 12 Test for the existence of an effect due to anesthesia type at 0.01. $F_{0.01} =$	10	L3	CO6
5 2		ST ST LABILIE ST ST			
		57 2024 57			
		ST 22.08. ST. S.			
		ST ST			
		4 of 4			
		Car			